

R820.12

EN:

1.4845

Type: 310 S

R820.12 is a heat resistant austenitic Cr-Ni-steel with excellent resistance to scaling in continuous service up to $1150^{\circ} \mathrm{C}\left(2100^{\circ} \mathrm{F}\right)$ and if used in intermittent heating and cooling up to $1095^{\circ} \mathrm{C}\left(2000^{\circ} \mathrm{F}\right)$. R820.12 has good resistance to both carburizing and reducing environments and has excellent resistance to oxidizing acids and most common corrosive agents. This grade has better resistance against sigma phase than R823.10/11 (type 314) mainly due to it having a much lower level of silicon content. R820.12 is very slightly sensitive to SO and particularly gases containing H S at temp. over $650^{\circ} \mathrm{C}\left(1200^{\circ} \mathrm{F}\right)$. Typical applications are wire for furnace parts, annealing boxers, heat exchangers, chemical plant equipment and welding wire.

CHEMICAL COMPOSITION (Nominal) \%

\mathbf{C}	$\mathbf{S i}$	$\mathbf{M n}$	$\mathbf{C r}$	$\mathbf{N i}$	$\mathbf{M o}$	\mathbf{N}		
0.045	0.80	1.50	24.4	19.3	<0.60	0.050		
PRE: 26	(PRE $=\mathrm{Cr}+3.1 \times \mathrm{Mo}+25 \times \mathrm{N})$							

Comments:

PHYSICAL PROPERTIES

Condition: Annealed

Density	$7.9 \quad \mathrm{~g} / \mathrm{cm}^{3}$
Moduls of elasticity, E	200000 GPa
Specific heat $\mathbf{0 - 1 0 0 ^ { \circ }} \mathbf{C}$	$500 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$

TYPICAL MECHANICAL PROPERTIES

Condition: Annealed

Proof strength	Rp0.2	$\min .180$	$\mathrm{~N} / \mathrm{mm}^{2}$
Tensile strength	$\mathbf{R m}$	$500-600 \quad \mathrm{~N} / \mathrm{mm}^{2}$	
Elongation	$\mathbf{A 1 0}$	$\min .40 \quad \%$	

DEFORMATION GRAPH

$\mathrm{N} / \mathrm{mm}^{2}$

THERMAL TREATMENT

	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
Annealing temperature	$1050-1150$	$1920-2100$

MAX. OPERATING TEMPERATURE

	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
Scaling temp. in air	1150	2100
Oxidizing atm. intermitt. / cont.	$1095-1150$	$2003-2102$
Oxidizing sulphurous atm.	$850-1000^{\star}$	$1562-1832^{*}$
Reducing sulphurous atm.	$600-850^{*}$	$1112-1562^{*}$

*) Max temp. depending on flue gas impurities (S, Na, V)
THERMAL CONDUCTIVITY

$20^{\circ} \mathbf{C}$	$12.0 \mathrm{~W} / \mathrm{mK}$
$100^{\circ} \mathbf{C}$	$13.5 \mathrm{~W} / \mathrm{mK}$
$\mathbf{2 0 0}{ }^{\circ} \mathbf{C}$	$14.5 \mathrm{~W} / \mathrm{mK}$
$400^{\circ} \mathbf{C}$	$17.0 \mathrm{~W} / \mathrm{mK}$
$\mathbf{6 0 0 ^ { \circ }} \mathbf{C}$	$19.0 \mathrm{~W} / \mathrm{mK}$
$\mathbf{8 0 0}{ }^{\circ} \mathbf{C}$	$22.5 \mathrm{~W} / \mathrm{mK}$

THERMAL EXPANSION

Thermal expansion per ${ }^{\circ} \mathrm{C} \times 10-6$ from $20^{\circ} \mathrm{C}$ to:

$200^{\circ} \mathrm{C}$	15.5
$400^{\circ} \mathbf{C}$	17.0
$600^{\circ} \mathrm{C}$	17.5
$800^{\circ} \mathbf{C}$	18.5
$1000^{\circ} \mathbf{C}$	19.0

RESISTIVITY

$20^{\circ} \mathrm{C}$	$850 \quad \mu \Omega \mathrm{~mm}$
$100^{\circ} \mathrm{C}$	$930 \quad \mu \Omega \mathrm{~mm}$
$200^{\circ} \mathrm{C}$	$1030 \quad \mu \Omega \mathrm{~mm}$
$400^{\circ} \mathrm{C}$	$1220 \quad \mu \Omega \mathrm{~mm}$
$600^{\circ} \mathrm{C}$	$1370 \quad \mu \Omega \mathrm{~mm}$
$800^{\circ} \mathrm{C}$	$1430 \quad \mu \Omega \mathrm{~mm}$

